LogoLogo
WebsiteSupportDownloadsForumsQuick LinksContact Us
v2.3
v2.3
  • OptiTrack Support Documentation
  • WHAT'S NEW
    • Unreal Engine: OptiTrack InCamera VFX
  • QUICK START GUIDES
    • Quick Start Guide: Getting Started
    • Quick Start Guide: Precision Capture
    • Quick Start Guide: Tutorial Videos
    • Quick Start Guide: Prime Color Setup
    • Quick Start Guide: Active Marker Tracking
    • Quick Start Guide: Outdoor Tracking Setup
  • HARDWARE
    • Cameras
      • Ethernet Cameras
        • PrimeX 41
        • PrimeX 22
        • PrimeX 13
        • PrimeX 13W
        • SlimX 13
        • Prime Color
      • USB Cameras
        • Slim 3U
        • Flex 13
        • Flex 3
        • Duo 3
        • Trio 3
        • Duo 3 and Trio 3 Setup
        • Adjusting Global Origin for Tracking Bars
    • Prepare Setup Area
    • Camera Mount Structures
    • Camera Placement
    • Camera Network Setup
    • Aiming and Focusing
    • Camera Status Indicators
  • MOTIVE
    • Installation and Activation
    • Motive Basics
    • Calibration
      • Continuous Calibration
      • Calibration Squares
    • Markers
    • Assets
      • Gizmo Tool: Translate, Rotate, and Scale
    • Rigid Body Tracking
      • Aligning Rigid Body Pivot Point with a Replicated 3D Model
    • Skeleton Tracking
    • Data Recording
      • Data Types
    • Labeling
    • Data Editing
    • Data Export
      • Data Export: BVH
      • Data Export: C3D
      • Data Export: CSV
      • Data Export: FBX
      • Data Export: TRC
    • Data Streaming
    • Camera Video Types
    • Audio Recording
    • Motive HotKeys
    • Measurement Probe Kit Guide
    • Motive Batch Processor
    • Reconstruction and 2D Mode
    • Tracking Bar Coordinate System
      • Transforming Coordinate System: Global to Local
  • MOTIVE UI PANES
    • Application Settings
      • Settings: Live Reconstruction
      • Settings: General
      • Settings: Views
      • Settings: Assets
        • Skeletons
        • Rigid Body
      • Settings: Camera
    • Mouse and Keyboard
    • Assets Pane
    • Builder Pane
    • Calibration Pane
    • Control Deck
    • Data Pane
    • Data Streaming Pane
    • Devices Pane
    • Edit Tools Pane
    • Graph View Pane
    • Info Pane
    • Labels Pane
    • Log Pane
    • Marker Sets Pane
      • Marker Name XML Files
    • Measurement Pane
    • Probe Pane
    • Properties Pane
      • Properties Pane: Camera
      • Properties Pane: Force Plates
      • Properties Pane: NI-DAQ
      • Properties Pane: OptiHub2
      • Properties Pane: Rigid Body
      • Properties Pane: Skeleton
      • Properties Pane: Take
      • Properties Pane: eSync2
    • Reference View pane
    • Status Panel
    • Toolbar/Command Bar
    • Viewport
  • PLUGINS
    • OptiTrack Unreal Engine Plugin
      • Unreal Engine: OptiTrack Live Link Plugin
      • Unreal Engine: OptiTrack Streaming Client Plugin
      • Unreal Engine: HMD Setup
      • Unreal Engine: MotionBuilder Workflow
      • Unreal Engine VCS Inputs
    • OptiTrack Unity Plugin
      • Unity: HMD Setup
    • OptiTrack OpenVR Driver
    • Autodesk Maya
      • Autodesk Maya: OptiTrack Insight VCS Plugin
    • Autodesk MotionBuilder
      • Autodesk MotionBuilder Plugin
      • Autodesk MotionBuilder: OptiTrack Skeleton Plugin
      • Autodesk MotionBuilder: OptiTrack Optical Plugin
      • Autodesk MotionBuilder: OptiTrack Insight VCS Plugin
      • Autodesk MotionBuilder: Timecode Data
    • OptiTrack Peripheral API
    • External Plugins
      • Houdini 19 Integration
  • ACTIVE COMPONENTS
    • Active Components Hardware
      • Active Puck
      • CinePuck
      • BaseStation
      • Information for Assembling the Active Tags
      • Manus Glove Setup
    • Configuration
      • Active Batch Programmer
      • Active Hardware Configuration: PuTTY
      • Active Component Firmware Compatibility
    • Active Marker Tracking
      • Active Finger Marker Set
      • Active Marker Tracking: IMU Setup
  • SYNCHRONIZATION
    • Synchronization Hardware
      • External Device Sync Guide: eSync 2
      • External Device Sync Guide: OptiHub2
    • Synchronization Setup
    • OptiTrack Timecode
  • VIRTUAL PRODUCTION
    • Unreal Engine: OptiTrack InCamera VFX
    • Entertainment Marker Sets
    • PrimeX 41
  • MOVEMENT SCIENCES
    • Movement Sciences Hardware
      • General Motive Force Plate Setup
      • AMTI Force Plate Setup
      • Bertec Force Plate Setup
      • Kistler Force Plate Setup
      • Delsys EMG Setup
      • NI-DAQ Setup
      • Multiple Device Setup
      • Prime Color Setup
    • Movement Sciences Marker Sets
      • Biomechanics Marker Sets
      • Biomech (57)
      • Rizzoli Marker Sets
    • For Visual3D Users
  • VIRTUAL REALITY
    • VR Plugins
      • VR Unreal Engine
        • OptiTrack Unreal Engine Plugin
        • Unreal Engine: OptiTrack Live Link Plugin
        • Unreal Engine: OptiTrack Streaming Client Plugin
        • Unreal Engine VCS Inputs
      • VR Unity
        • OptiTrack Unity Plugin
      • VR OpenVR
        • OptiTrack OpenVR Driver
    • VR HMD Setup
      • Unreal Engine: HMD Setup
      • Unity: HMD Setup
      • Manually Calibrating the HMD Pivot Point
      • Sync Configuration with an HTC Vive System
    • Navigation Controller Guide
    • SlimX 13
    • Active Marker Tracking
      • Active Finger Marker Set
      • Active Marker Tracking: IMU Setup
    • Synchronization Hardware
      • External Device Sync Guide: eSync 2
      • External Device Sync Guide: OptiHub2
  • ANIMATION
    • Autodesk Maya
      • Autodesk Maya: OptiTrack Insight VCS Plugin
    • Autodesk MotionBuilder
      • Autodesk MotionBuilder Plugin
      • Autodesk MotionBuilder: OptiTrack Skeleton Plugin
      • Autodesk MotionBuilder: OptiTrack Optical Plugin
      • Autodesk MotionBuilder: OptiTrack Insight VCS Plugin
      • Autodesk MotionBuilder: Timecode Data
  • ROBOTICS
    • PrimeX 22
    • Outdoor Tracking Setup
  • DEVELOPER TOOLS
    • Developer Tools Overview
    • NatNet SDK
      • NatNet 4.0
      • NatNet: Class/Function Reference
      • NatNet: Creating a Managed (C sharp) Client Application
      • NatNet: Creating a Native (C++) Client Application
      • NatNet: Data Types
      • NatNet: Matlab Wrapper
      • NatNet: Migration to NatNet 3.0 libraries
      • NatNet: RebroadcastMotiveData Sample
      • NatNet: Remote Requests/Commands
      • NatNet: Sample Projects
      • NatNet: Unicast Data Subscription Commands
      • Latency Measurements
    • Motive API
      • Motive API: Quick Start Guide
      • Motive API Overview
      • Motive API: Function Reference
      • Motive API Camera Calibration
    • Camera SDK
      • Camera SDK Classes
        • Class: cCameraGroupFilterSettings
        • Class: cCameraGroupMarkerSizeSettings
        • Class: cCameraGroupPointCloudSettings
        • Class: cCameraModule
        • Class: cRigidBodySettings
        • Class: cRigidBodySolutionTest
        • Class: cTTAPIListener
        • Class: cUID
  • MARKER SETS
    • Full Body
      • Baseline (37)
      • Baseline + Hinged Toe (41)
      • Baseline + Hinged Toe, with Headband (41)
      • Baseline + 13 Additional Markers (50)
      • Biomech (57)
      • Conventional (39)
    • Full Body + Fingers
      • Baseline + Hinged Toe + Fingers (49)
      • Baseline + 11 Additional Markers + Fingers (54)
      • Manus Glove Setup
    • Upper
      • Baseline Upper (25)
      • Baseline Upper Body + Fingers (33)
      • Conventional Upper (27)
    • Lower
      • Baseline Lower (20)
      • Helen Hayes Lower (19)
      • Conventional Lower (16)
    • Hand and Fingers
      • Left and Right Hand (11)
      • Active Finger Marker Set
    • Rizzoli Marker Sets
    • Entertainment Marker Sets
    • Rigid Body Skeleton Marker Set
  • GENERAL TROUBLESHOOTING
    • Troubleshooting
    • Running Motive on High DPI Displays
    • Firewall Settings
Powered by GitBook
On this page
  • Filters (2D Object Filter)
  • Display Options
  • Advanced
  • Mask Regions

Was this helpful?

Export as PDF
  1. MOTIVE UI PANES
  2. Application Settings

Settings: Camera

PreviousRigid BodyNextMouse and Keyboard

Last updated 2 years ago

Was this helpful?

This section of the application settings is used for configuring the properties for all of the cameras in the tracking group. The settings include display options, masking properties, but most importantly, the 2D Filter settings for the camera system which basically determines which reflections are considered as marker reflections from the camera view.

Filters (2D Object Filter)

Filter Type

Default: Size and RoundnessToggles 2D object (Size and Roundness) filtering on or off.This filter is very useful for filtering out extraneous reflections according to their characteristics (size and roundness) rather than blocking pixels using the masking tool or the Block Visible feature. Turn off this setting only when you want to use every 2D pixels above the brightness threshold from camera views. When there are extraneous or flickering reflections in the view, turn on the filter to specify and consider reflections only from markers. There are multiple filtering parameters to distinguish the marker reflections. Given that there are assumed marker characteristics, filtering parameters can be set. The size parameters can be defined to filter out extra-small or extra-large reflections that are most likely from extraneous sources other than markers. Non-circular reflections can be ignored assuming that all reflective markers have circular shapes. Note that even when applying the size and roundness filter, you should always Block Visible when you calibrate.

Min Thresholded Pixels (pixels)

Default: 4 pixelsThe minimum pixel size of a 2D object, a collection of pixels grouped together, for it to be included in the Point Cloud reconstruction. All pixels must first meet the brightness threshold defined in the Cameras pane in order to be grouped as a 2D object. This can be used to filter out small reflections that are flickering in the view. The default value for the minimum pixel size is 4, which means that there must be 4 or more pixels in a group for a ray to be generated.

Max Thresholded Pixels (pixels)

Default: 2000 pixelsThe maximum size of a 2D object, in pixels, in order for it to be included in point cloud reconstruction. Default is 2000 pixels which basically means that all of detected large reflections smaller than 2000 pixel-size will be included as a 2D object. Use this to filter out larger markers in a variable marker capture. For instance, if you have 4 mm markers on an actor's face and 14 mm markers on their body, use this setting to filter out the larger markers if the need arises.

Circularity

Default: 0.6This setting sets the threshold of the circularity filter. Valid range is between 0 and 1; with 1 being a perfectly round reflection and 0 being flat. Using this 2D object filter, the software can identify marker reflections using the shape, specifically the roundness, of the group of thresholded pixels. Higher circularity setting will filter out all other reflections that are not circular. It is recommended to optimize this setting so that extraneous reflections are efficiently filtered out while not filtering out the marker reflections. When using lower resolution cameras to capture smaller markers at a long distance, the marker reflection may appear to be more pixelated and non-circular. In this case, you may need to lower the circularity filter value for the reflection to be considered as a 2D object from the camera view. Also, this setting may need to be lowered when tracking non-spherical markers in order to avoid filtering the reflections.

Intrusion Band

Default: 0.5 (Pixels)The intrusion band feature allows cameras to recognize reflections that are about to be merged and filter them out before it happens. This filter occurs before the circularity filter, and these reflections are rejected before the thresholded pixels merge. This is useful for improving the accuracy of the tracking, because bright pixels from close by reflections may slightly shift the centroid locations. The intrusion band value is added to the calculated radius of detected markers to establish a boundary, and any extraneous reflections intruding the boundary is considered as the intrusion and gets omitted. When an intrusion happens, both intruding reflection and detected marker reflection will be filtered out.

Garyscale Floor

Default: 48The grayscale floor setting further darkens pixels with lower brightness intensity values.

Object Margin

Default: 2 (Pixels)The object margin adds an additional margin on top of the intrusion band for filtering out merged reflections. Lowering this value will better detect close-by reflections, but may decrease the accuracy of the centroid positions as a tradeoff.

Display Options

Name

Sets the name for the selected camera group.

Camera Color

Sets the color for camera group members as they appear in the 3D viewport. Color values are input as standard RGB triplets.

Visible Cameras

Selects whether cameras in the group are displayed in the viewport.

Show All Color Camera

Show Capture Volume

Selects whether the capture volume (defined as capable of tracking a single marker) is displayed in the viewport. Enabling this will allow the volume to be displayed as a wire cage around the ground plane where multiple cameras fields of view intersect. Valid options are True, False (default).

Camera Overlap

Sets the minimum camera overlap necessary for a region to be visualized as part of the capture volume. Higher numbers represent more camera coverage, but they will tend to reduce the size of the visualized capture volume. Valid range is 1 to 25 (default 3).

Volume Resolution

Sets the resolution of the capture volume visualization. A higher number represents a more detailed visualization. Valid range is 1 to 120 (default 50).

FOV Intensity

Sets the opacity of the FOV visualization. A higher value represents a more opaque volume visualization. Valid range is 1 to 100 (default 50).

Opacity

Sets the opacity of the volume visualization. A value of 1 is transparent and 100 is opaque. Valid range is 1 to 100 (default 100).

Advanced

Synchronization Control

Determines how late camera frames are dealt with. Timely Delivery will drop late frames, which is ideal for real-time applications where data completeness is secondary to timeliness. Complete Delivery will hold up processing of frames when a frame is late. Automatic, which is the default and recommended setting, runs in Timely Delivery mode until it gets a non-trivial percentage of late frames, at which point it will automatically switch to Complete Delivery.

Shutter Offset

Delays the shutter timing of selected tracking camera group for N microseconds.

Mask Regions

Mask Width (pixels)

Sets the extra pixel coverage (width) for masking visible markers when the mask visible function is used. A larger number will block a wider grouping of pixels simultaneously. Valid range is determined by the resolution of the cameras.

Mask Height (pixels)

Sets the extra pixel coverage (height) for masking visible markers when the mask visible function is used. A larger number will block a wider grouping of pixels simultaneously. Valid range is determined by the resolution of the cameras.

When a frame of image is captured by a camera, the 2D Object Filter is applied. By judging on sizes and shapes of the detected reflections, this filter determines which of them can be accepted as marker reflections. Parameters for the 2D Object filter are configured in the under the Filters section.

For Motive 2.0 and above. The 2D Object filter settings in the Reconstruction Settings pane have been moved over to the .

The size filter applied with a maximum size limit of 200 pixels. Any reflections bigger than 200 pixel-size is omitted from the Point Cloud reconstruction calculation.
The circle filter omitting non-circular reflections from a 2D camera view.

By default, only the cameras that are equipped with the IR filter switcher are shown in the and Prime Color cameras without filter switcher are hidden. When this setting is set to true, all of the Prime Color cameras will show up in the 3D viewport.

Devices pane
Devices pane
Prime Color
3D viewport