Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
When an NI-DAQ device is selected in Motive, its device information gets listed under the Properties pane. Just basic information on the used device will be shown in the Properties pane. For configuring properties of the device, use the Devices pane.
For more information, read through the NI-DAQ setup page: NI-DAQ Setup.
Advanced Settings
The Properties: NI-DAQ contains advanced settings that are hidden by default. Access these settings by going to the menu on the top-right corner of the pane and clicking Show Advanced and all of the settings, including the advanced settings, will be listed under the pane.
The list of advanced settings can also be customized to show only the settings that are needed specifically for your capture application. To do so, go the pane menu and click Edit Advanced, and uncheck the settings that you wish to be listed in the pane by default. One all desired settings are unchecked, click Done Editing to apply the customized configurations.
Only enabled NI-DAQ devics will be actively measuring analog signals.
This setting determines how the recording of the selected NI-DAQ device will be triggered. This must be set to None for reference clock sync and to Device for recording trigger sync.
None: NI-DAQ recording is triggered when Motive starts capturing data. This is used when using the reference clock signal for synchronization.
Device: NI-DAQ recording is triggered when a recording trigger signal to indicate the record start frame is received through the connected input terminal.
(available only when Trigger Sync is set to Device) Name of the NI-DAQ analog I/O terminal where the recording trigger signal is inputted to.
This setting sets whether an external clock signal is used as the sync reference. For precise synchronization using the internal clock signal sync, set this to true.
True: Setting this to true will configure the selected NI-DAQ device to synchronize with an inputted external sample clock signal. The NI-DAQ must be connected to an external clock output of the eSync on one of its digital input terminals. The acquisition rate will be disabled since the rate is configured to be controlled by the external clock signal.
False: NI-DAQ board will collect samples in 'Free Run' mode at the assigned Acquisition Rate.
(available only when Reference Clock Sync is set to True) Name of the NI-DAQ digital I/O terminal that the external clock (TTL) signal is inputted to.
Set this to the output port of the eSync where it sends out the internal clock signal to the NI-DAQ.
Shows the acquisition rate of the selected NI-DAQ device(s).
Depending on the model, NI-DAQ devices may have different sets of allowable input types and voltage ranges for their analog channels. Refer to your NI-DAQ device User's Guide for detailed information about supported signal types and voltage ranges.
(Default: -10 volts) Configure the terminal's minimum voltage range.
(Default: +10 volts) Configure the terminal's maximum voltage range.
Configures the measurement mode of the selected terminal. In general, analog input channels with screw terminals use the single-ended measurement system (RSE), and analog input channels with BNC terminals use the differential (Diff) measurement system. For more information on these terminal types, refer to NI documentation.
Terminal: RSE Referenced single ended. Measurement with respect to ground (e.g. AI_GND) (Default)
Terminal: NRSE NonReferenced single ended. Measurement with respect to single analog input (e.g. AISENSE)
Terminal: Diff Differential. Measurement between two inputs (e.g. AI0+, AI0-)
Terminal: PseudoDiff Differential. Measurement between two inputs and impeded common ground.
[Advanced] Name of the selected device.
Device model ID, if available.
Device serial number of the selected NI-DAQ assigned by the manufacturer.
Type of device.
Total number of available channels on the selected NI-DAQ device.
_[Advanced]_What mode of Motive playback being used.
Whether the device is ready or not.
Tristate status of either Need Sync, Ready for Sync, or Synced. Updates the "State" icon in the Devices pane.
[Advanced] Internal device number.
User editable name of the device.
Skeleton properties determine how Skeleton assets are tracked and displayed in Motive.
To view related properties, select a Skeleton asset in the or in the 3D viewport, and the corresponding properties will be listed under the . These properties can be modified both in Live and Edit mode. Default creation properties are listed under the .
Advanced Settings
The Properties: Skeleton contains advanced settings that are hidden by default. Access these settings by going to the menu on the top-right corner of the pane and clicking Show Advanced and all of the settings, including the advanced settings, will be listed under the pane.
The list of advanced settings can also be customized to show only the settings that are needed specifically for your capture application. To do so, go the pane menu and click Edit Advanced, and uncheck the settings that you wish to be listed in the pane by default. One all desired settings are unchecked, click Done Editing to apply the customized configurations.
Shows the name of selected Skeleton asset.
Enables/disables both tracking of the selecting Skeleton and its visibility under the perspective viewport.
The minimum number of markers that must be tracked and labeled in order for a Rigid Body asset, or each Skeleton bone, to be booted or first tracked.
The minimum number of markers that must be tracked and labeled in order for a Rigid Body asset, or each Skeleton bone, to continue to be tracked after the initial boot.
[Advanced] Euler angle rotation order used for calculating the bone hierarchy.
Selects whether or not to display the Skeleton name in the 3D Perspective View.
Selects how the Skeleton will be shown in the 3D perspective view.
Segment: Displays Skeleton as individual Skeleton segments.
Avatar (male): Displays Skeleton as a male avatar.
Avatar (female): Displays Skeleton as a female avatar.
Sets the color of the Skeleton.
This feature is supported in Live mode and 2D mode only. When enabled, the color of the Skeleton segments will change whenever there are tracking errors.
Show or hide Skeleton bones.
[Advanced] Displays orientation axes of each segments in the Skeleton.
[Advanced] Shows the Asset Model Markers as transparent spheres on each Skeleton segment. The asset mode markers are the expected marker locations according to the Skeleton solve.
[Advanced] Draws lines between labeled Rigid Body or Skeleton markers and corresponding expected marker locations. This helps to visualize the offset distance between actual marker locations and the asset model markers.
[Advanced] Displays lines between each Skeleton markers and their associated Skeleton segments.
Applied double-exponential smoothing to translation and rotation of a Rigid Body or a skeletal bone. Disabled at 0.
Compensate for system latency by predicting bone movements into the future. For this feature to work best, smoothing needs to be applied as well. Disabled at 0.
[Advanced] When needed, you can damp down translational and/or rotational tracking of a Rigid Body or a Skeleton bone on selected axis.
When a force plate is selected in Motive, its device information gets listed under the . For configuring force plate properties, use the and modify the corresponding device properties.
For more information, read through the force plate setup pages:
Advanced Settings
The Properties: Force Plates contains advanced settings that are hidden by default. Access these settings by going to the menu on the top-right corner of the pane and clicking Show Advanced and all of the settings, including the advanced settings, will be listed under the pane.
The list of advanced settings can also be customized to show only the settings that are needed specifically for your capture application. To do so, go the pane menu and click Edit Advanced, and uncheck the settings that you wish to be listed in the pane by default. One all desired settings are unchecked, click Done Editing to apply the customized configurations.
Force Plate Group Properties:
Group policy is enforced for the force plates that are from the same vendors. This means most of the force plate properties are shared within the force plate groups. Shared settings include the enabled status, sampling rates, and sync modes. These settings should be configured the same for all force plates in most cases. If you need to disable a specific force plate among the group, this will need to be done by powering off the amplifier or disabling the device from the Windows Device Manager.
Enables or disables selected force plate. Only enabled force plates will be shown in Motive and be used for data collection.
Select whether the force plate is synchronized through a recording trigger. This must be set to Device when force plates are synchronized through recording trigger signal from the eSync. This must be set to None when synchronizing through a clock signal.
When set to true, the force plate system synchronizes by reference to an external clock signal. This must be enabled for the reference clock sync. When two systems syncs using the recording trigger, this must be turned off.
Indicates the output port on the eSync that is used for synchronizing the selected force plate. This must match the output port on the eSync that is connected to the force plate amplifier and sending out the synchronization signal.
Resulting data acquisition rate of the force plates. For reference clock sync setups, it will match the frequency of the clock signal. For triggered sync setups, this will match the multiple of the camera system frame rate.
Assigned number of the force plates.
Name of the Motive asset associated with the selected device. For Manus Glove integration, this must match the name of the Skeleton.
Name of the selected force plate.
Model number of the force plate
Force plate serial number.
Number of active channels available in the selected device. For force plates, this defaults to 6 with channels responsible for measuring 3-dimensional force and moment data.
Indicates the state that the force plate is in. If the force plate is streaming the data, it will be indicated Receiving Data. If the force plate is on standby for data collection, it will be indicated Ready.
Size scale of the resultant force vector shown in the 3D viewport.
Length of the force plate.
Width of the force plate.
Manufacturer defined electrical-to-mechanical offset values.
Lists out positions of the four force plate corners. Positions are measured with respect to the global coordinate system, and this is calibrated when you Set Position using the CS-400 calibration square.
Rigid body properties determine how the corresponding Rigid Body asset is tracked and displayed in the viewport.
To view related properties, select a Rigid Body asset in the or in the , and the corresponding properties will be listed under the . These properties can be modified both in Live and Edit mode. Default creation properties are listed under the .
Advanced Settings
The Properties: Rigid Body contains advanced settings that are hidden by default. Access these settings by going to the menu on the top-right corner of the pane and clicking Show Advanced and all of the settings, including the advanced settings, will be listed under the pane.
The list of advanced settings can also be customized to show only the settings that are needed specifically for your capture application. To do so, go the pane menu and click Edit Advanced, and uncheck the settings that you wish to be listed in the pane by default. One all desired settings are unchecked, click Done Editing to apply the customized configurations.
Allows a custom name to be assigned to the Rigid Body. Default is "Rigid Body X" where x is the Rigid Body ID.
Enables/Disables tracking of the selected Rigid Body. Disabled Rigid Bodies will not be tracked, and its data will not be included in the exported or streamed tracking data.
User definable ID for the selected Rigid Body. When working with capture data in the external pipeline, this value can be used to address specific Rigid Bodies in the scene.
The minimum number of markers that must be tracked and labeled in order for a Rigid Body asset, or each Skeleton bone, to be booted or first tracked.
The minimum number of markers that must be tracked and labeled in order for a Rigid Body asset, or each Skeleton bone, to continue to be tracked after the initial boot.
_[Advanced]_The order of the Euler axis used for calculating the orientation of the Rigid Body and Skeleton bones. Motive computes orientations in Quaternion and converts them into an Euler representation as needed. For exporting specific Euler angles, it's recommended to configure it from the Exporter settings, or for streaming, convert Quaternion into Euler angles on the client-side.
Selects whether or not to display the Rigid Body name in the 3D Perspective View. If selected, a small label in the same color as the Rigid Body will appear over the centroid in the 3D Perspective View.
Show the corresponding Rigid Body in the 3D viewport when it is tracked by the camera system.
Color of the selected Rigid Body in the 3D Perspective View. Clicking on the box will bring up the color picker for selecting the color.
For Rigid Bodies, this property shows, or hides, visuals of the Rigid Body pivot point.
[Advanced] Enables the display of a Rigid Body's local coordinate axes. This option can be useful in visualizing the orientation of the Rigid Body, and for setting orientation offsets.
Shows a history of the Rigid Body’s position. When enabled, you can set the history length and the tracking history will be drawn in the Perspective view.
Shows the Marker Constraints as transparent spheres on the Rigid Body. Asset mode markers are the expected marker locations according to the Rigid Body solve.
Draws lines between labeled Rigid Body or Skeleton markers and corresponding expected marker locations. This helps to visualize the offset distance between actual marker locations and the Marker Constraints.
[Advanced] When enabled, all markers that are part of the Rigid Body definition will be dimmed, but still visible, when not present in the point cloud.
When a valid geometric model is loaded in the Attached Geometry section, the model will be displayed instead of a Rigid Body when this entry is set to true.
Attached Geometry setting will be visible if the Replace Geometry setting is enabled. Here, you can load an OBJ file to replace the Rigid Body. Scale, positions, and orientations of the attached geometry can be configured under the following section also. When a OBJ file is loaded, properties configured in the corresponding MTL files alongside the OBJ file will be loaded as well.
Attached Geometry Settings
When the Attached Geometry is enabled, you can attach a 3D model to a Rigid Body and the following setting will be available also.
Pivot Scale: Adjusts the size of the Rigid Body pivot point.
Scale: Rescales the size of attached object.
Yaw (Y): Rotates the attached object in respect to the Y-axis of the Rigid Body coordinate axis.
Pitch (X): Rotates the attached object in respect to the X-axis of the Rigid Body coordinate axis.
Roll (Z): Rotates the attached object in respect to the Z-axis of the Rigid Body coordinate axis.
X: Translate the position of attached object in x-axis in respect to the Rigid Body coordinate.
Y: Translate the position of attached object in y-axis in respect to the Rigid Body coordinate.
Z: Translate the position of attached object in z-axis in respect to the Rigid Body coordinate.
Opacity: Sets the opacity of an attached object. An OBJ file typically comes with a corresponding MTL file which defines its properties, and the transparency of the object is defined within these MTL files. The Opacity value under the Rigid Body properties applies a factor between 0 ~ 1 in order to rescale the loaded property. In other words, you can set the transparency in the MTL file and rescale them using the Opacity property in Motive.
If you are exporting an OBJ file from Maya, you will need to make sure the Ambient Color setting is set to white upon export. If this color is set to black, it will result in removing textures when a Rigid Body is deselected.
IMU feature is not fully supported in Motive 3.x. Please use Motive 2.3 for using IMU active components.
Uplink ID assigned to the Tag or Puck using the Active Batch Programmer. This ID must match with the Uplink ID assigned to the Active Tag or Puck that was used to create the Rigid Body.
Radio frequency communication channel configured on the Active Tag, or Puck, that was used to define the corresponding Rigid Body. This must match the RF channel configured on the active component; otherwise, IMU data will not be received.
Applies double exponential smoothing to translation and rotation of the Rigid Body. Increasing this setting may help smooth out noise in the Rigid Body tracking, but excessive smoothing can introduce latency. Default is 0 (disabled).
Compensate for system latency when tracking of the corresponding Rigid Body by predicting its movement into the future. Please note that predicting further into the future may impact the tracking stability.
[Advanced] When needed, you can damp down translational and/or rotational tracking of a Rigid Body or a Skeleton bone on selected axis.
Important Note
Please note that the OptiHub2 is not designed for precise synchronization with external devices. It is used to provide only a rough synchronization to a trigger event on the input/output signal. Using an OptiHub2, there will be some amount of time delay between the trigger events and the desired actions, and for this reason, the OptiHub2 is not suitable for the precisely synchronizing to an external device. To accomplish such synchronization, it is recommended to use the instead along with an Ethernet camera system.
By modifying the device properties of the OptiHub, users can customize the sync configurations of the camera system for implementing external devices in various sync chain setups. This page directly lists out the properties of the OptiHub. For general instructions on customizing sync settings for integrating external devices, it is recommended to read through the guide.
This option is only valid if the Sync Input: Source is set to Internal Sync. Controls the frequency in Hertz (Hz) of the OptiHub 2's internal sync generator. Valid frequency range is 8 to 120 Hz.
This option is only valid if the Sync Input: Source is set to Sync In or USB Sync_. Controls synchronization delay in microseconds (us) between the chosen sync source signal and when the cameras are actually told to expose. This is a global system delay that is independent of, and in addition to, an individual camera's exposure delay setting. Valid range is 0 to 65862 us, and should not exceed one frame period of the external signal._
To setup the sync input signals, first define a input Source and configure desired trigger settings for the source:
Internal/Wired sets the OptiHub 2 as the sync source. This is the default sync configuration which uses the OptiSync protocol for synchronizing the cameras. The Parent OptiHub 2 will generate an internal sync signal which will be propagated to other (child) OptiHub 2(s) via the Hub Sync Out Jack and Hub Sync In Jack. For V100:R1(legacy) and the Slim 3U cameras, Wired Sync protocol is used. In this mode, the internal sync signal will still be generated but it will be routed directly to the cameras via daisy-chained sync cables.
Sync In sets an external device as the sync source.
This option is only valid if the Sync Input: Source is set to Internal Sync. Controls the frequency in Hertz (Hz) of the OptiHub 2's internal sync generator, and the this frequency will control the camera system frame rate. Valid frequency range is 8 to 120 Hz.