Loading...
Loading...
Loading...
Loading...
Loading...
When enabled, the Broadcast Storm Control feature on the NETGEAR ProSafe GSM7228S may interfere with the synchronization mechanism used by OptiTrack Ethernet cameras. For proper system operations, the Strom Control features must be disabled for all of the ports used in this aggregator switch.
Step 1. Access the IPv4 settings on the network card that the camera network is connected to.
On windows, open the Network and Sharing Center and access Change adaptor settings.
Right-click on the adapter that the network switch is connected to and access its properties.
Among the list of items, select the Internet Protocol Version 4 (TCP/IPv4) and access its properties by clicking the Properties button.
Step 2. Make a note of the IP address settings for the network card connected to the switch.
Step 3. Change the IP address of the network card connected to the switch to 169.254.100.200. As shown below.
Step 4. Open windows explorer, and access 169.254.100.100
Step 5. Log into the switch with Username 'admin', and leave Password blank
Step 6. Navigate to Security->Traffic Control->Storm Control->Storm Control Global Configuration
Step 7. Ensure that all storm control options are disabled
Step 8. Navigate to Maintenance->Save Config->Save Configuration
Step 9. Check the 'Save Configuration' check box
Step 10. Log out of the switch, or just close the browser window
Step 11. Restore the IP address settings noted in Step 2 for the network card connected to the switch
This page provides instructions on how to configure the CameraNicFilter.xml file to whitelist or blacklist specific cameras from the connected camera network.
Starting with Motive 2.1, you can specify which cameras to utilize among the connected Ethernet cameras in a system. This can be done by setting up an XML file (CameraNicFilter.xml) and placing it in Motive's ProgramData directory: C:\ProgramData\OptiTrack\Motive\CameraNicFilter.xml. Once this is set, Motive will initialize only the specified cameras within the respective network interface. This allows users to distribute the cameras to specific network interfaces on a computer or on multiple computers.
Additional Note:
This filter works with Ethernet camera systems only. USB camera systems are not supported.
At the time of writing, the eSync is NOT supported. In other words, the eSync cannot be present in the system in order for the filter to work properly.
For common applications, there is usually no need to separate the cameras to different network interfaces. However, there are few situations where you may want to use this filter to segregate the cameras. Below are some of the sample applications of the filters:
Multiple Prime Color cameras
When there are multiple Prime Color cameras in a setup, you can configure the filter to spread out the data load. In other words, you can uplink color camera data through a separate network interface (NIC) and distribute the data traffic to prevent any bandwidth bottleneck. To accomplish this, multiple NICs must be present on the host computer, and you can distribute the data and uplink them onto different interfaces.
Active marker tracking on multiple capture volumes
For active marker tracking, this filter can be used to distribute the cameras to different host computers. By doing so, you can segregate the cameras into multiple capture volumes and have them share the same connected BaseStation. This could be beneficial for VR applications especially if you plan on having multiple volumes to calibrate because you can use the same active components between different volumes.
To separate the cameras, you will need to use a text editor to create an XML file named CameraNicfilter.xml. In this XML file, you will specify which cameras to whitelist or blacklist within the connected network interface. Please note that it is very important for the XML file to match the expected format; for this reason, we strongly recommend to first copy-and-paste the template and start from there.
Attached below is a basic template of the CameraNicFilter.xml file. On each NIC element, you can specify each network interface using the IPAddress attribute, and then in its child elements, you can specifically set which cameras to whitelist or blacklist using their serial numbers.
For each network interface that you will be using to communicate with the cameras, you will need to create a <NIC> element and assign a network IP address (IPv4) to its IPAddress attribute. Then, under each NIC element, you can specify which cameras to use or not to use.
Please make sure correct IP addresses are assigned when configuring the NIC element. Run the ipconfig command on the windows command prompt to list out the assigned IP addresses of the available networks on the computer and then use the IPv4 address of the network that you wish to use. When necessary, you can also set a static IP address for the network interface and use a known address value for easier setup.
Under the NIC element, define two child elements: <Whitelist> and <Blacklist>. In each element, you will be specifying the cameras using their serial numbers. Within each network interface, only the cameras listed under the <Whitelist> element will be used and all of the cameras under <Blacklist> will be ignored.
As shown in the above template, you can specify which cameras to whitelist or blacklist using the corresponding camera serial numbers. For example, you can use the following to specify the camera (M18883) <Serial>M18883</Serial>
. You can also use a partial serial number as a wildcard to specify all cameras with the matching serial number. For example, if you wish to blacklist all Color cameras in a network (192.168.1.3), you can use C as the wildcard serial number since the serial number of all color cameras start with C.
Once the XMl file is configured, please save the file in the ProgramData directory: C:\ProgramData\OptiTrack\Motive\CameraNicFilter.xml
. If everything is set up properly, only the whitelisted cameras under each network interface will get initialized in Motive, and the data from only the specified cameras will be uplinked through the respective network interface.
You'll want to remove as much bloatware from your PC in order to optimize your system and make sure minimal unnecessary background processes are running. Background process can take up valuable CPU resources from Motive and cause frame drops while running your camera system.
There are many external resources in order to remove unused apps and halt unnecessary background processes, so they will not be covered within the scope of this page.
As a general rule for all OptiTrack camera systems, you'll want to disable all Windows firewalls and either disable or remove any Antivirus software. If firewalls and Antivirus software is enabled, this will cause frame drops while running your camera system.
In order for Motive to run above other processes, you'll need to change the Priority of Motive.exe to High.
Right Click on the Motive shortcut from your Desktop
In the Target: text field enter the below path, this will allow Motive to run at High Priority that will persist from closing and reopening Motive.
C:\Windows\System32\cmd.exe /C start "" /high "C:\Program Files\OptiTrack\Motive\Motive.exe"
Please refrain from setting the priority to Realtime. If Realtime is selected, this can cause loss of input control (mouse, keyboard, etc.) since Windows can prioritize Motive above input processes.
If you're running a system with a CPU with a lower core count, you may need to disable Motive from running on a couple of cores. This will help stabilize the overall system and free up some cores for other Windows required processes.
From the Task Manager, navigate to the Details tab and right click on Motive.exe
Select Set Affinity
From this window, uncheck the cores you wish to disallow Motive.exe to run on.
Click OK
Please note that you should only ever disable 2 cores or less to insure Motive still runs smoothly.
We recommend that you start with only one core and work your way up to two if you're still experiencing frame drop issues with your camera system.
Your Network Interface Card has a few settings that can change in order to optimize your system.
To navigate to the camera network's NIC:
Open Windows Settings
Select Ethernet from the navigation sidebar
Under Related settings select Change adapter options
From the Network Connections pop up window, right click on your NIC and select Properites
Select the Configure... button and navigate to the Advanced tab
For the Speed and Duplex property, you'll want to change this to the highest throughput of your NIC. If you have a 10Gbps NIC, you'll want to make sure that 10Gbps Full Duplex is selected. This property allows the NIC to operate at it's full range. If this setting is not altered to Full, Windows has the tendency to throttle the NIC throughput causing a 10Gbps NIC to only be sending data at 2Gbps.
Interrupt Moderation allows the NIC to moderate interrupts. When there is a significant amount of data being uplinked to Motive, this can cause more interrupts to occur thus hindering the system performance. You'll want to Disable this property.
After the above properties have been applied, the NIC will need to go through a reboot process. This process is automatic, however, it will make it appear that your camera network is down for a few minutes. This is normal and once the NIC is rebooted, should begin to work as expected.
Although not recommended, you may use a laptop PC to run a larger or Prime Color Camera system. When using a laptop PC, you'll need to use an external network adapter for. The above settings will typically not apply to these types of adapters, so no properties will need to changed.
It is important to use a Thunderbolt port adapter with corresponding Thunderbolt ports on your laptop as opposed to a standard USB-C adapters/ports.
This page provides the general specifications for an OptiTrack camera setup. Please see our and pages for more detailed instructions on how to setup your Ethernet camera system.
An Ethernet camera system networks via Ethernet cables. Ethernet-based camera models include PrimeX series (PrimeX 13, 13W, 22, 41), SlimX 13, and Prime Color models. Ethernet cables not only offer faster data transfer rates, but they also provide power over Ethernet to each camera while transferring the data to the host PC. This reduces the number of required cables and simplifies the overall setup. Furthermore, Ethernet cables have much longer length capability (up to 100m), allowing the systems to cover large volumes.
Host PC with an isolated network (PCI/e NIC)
Ethernet Cameras
Ethernet cables
Ethernet PoE/PoE+ Switches
Uplink switch (for large camera count setup)
The eSync (optional for synchronizations)
Cable Type
There are multiple categories for Ethernet cables, and each has different specifications for maximum data transmission rate and cable length. For an Ethernet based system, Cat6 or above Gigabit Ethernet cables should be used. 10 Gigabit Ethernet cables – Cat6a or above — are recommended in conjunction with a 10 Gigabit uplink switch for the connection between the uplink switch and the host PC in order to accommodate for high data traffic.
Note
10Gb uplink switches, NICs, and cables are recommended for large camera counts or high data cameras like the Prime Color cameras. Typically 1Gb switches, NICs, and cables should be enough to accommodate smaller and moderately sized systems. If you're unsure of whether or not you need more than 1Gb, please contact one of our Sales Engineers or see our page for more information.
Electromagnetic Shielding
We recommend using only cables that have electromagnetic interference shielding. If unshielded cables are used, cables in close proximity to each other have the potential to create data transfer interference and cause cameras to stall in Motive.
Unshielded cables do not protect the cameras from Electrostatic Discharge (ESD), which can damage the camera. Do not use unshielded cables in environments where ESD exposure is a risk.
Our current general standard for network switches are:
PoE ports with at least 1GB of data transfer for each port.
If you have a switch that is not purchased from OptiTrack, these are not supported by our support team.
Below are a couple of diagrams to properly setup your network. These setups are strongly advised and have been tested for optimal use and safety.
Ethernet Camera Models: PrimeX series and SlimX 13 cameras. Follow the below wiring diagram and connect each of the required system components.
Connect PoE Switch(s) into the Host PC: Start by connecting a PoE switch into the host PC via an Ethernet cable. Since the camera system takes up a large amount of data bandwidth, the Ethernet camera network traffic must be separated from the office/local area network. If the computer used for capture is connected to an existing network, you will need to use a second Ethernet port or add-on network card for connecting the computer to the camera network. When you do, make sure to turn off your computer's firewall for the particular network under Windows Firewall settings.
Connect the Ethernet Cameras to the PoE Switch(s): Ethernet cameras connect to the host PC via PoE/PoE+ switches using Cat 6, or above, Ethernet cables.
Power the Switches: The switch must be powered in order to power the cameras. To completely shut down the camera system, the network switch needs to be powered off.
Ethernet Cables: Ethernet cable connection is subject to the limitations of the PoE (Power over Ethernet) and Ethernet communications standards, meaning that the distance between camera and switch can go up to about 100 meters when using Cat 6 cables (Ethernet cable type Cat5e or below is not supported). For best performance, do not connect devices other than the computer to the camera network. Add-on network cards should be installed if additional Ethernet ports are required.
On smaller systems you may not need to use the SFP ports to uplink your data. The SFP port on the switch with the SFP module provided by OptiTrack are specific for heavily loaded systems (i.e. larger camera counts, Prime Color Camera systems).
Ethernet Cable Requirements
Cable Type
There are multiple categories for Ethernet cables, and each has different specifications for maximum data transmission rate and cable length. For an Ethernet based system, category 6 or above Gigabit Ethernet cables should be used. 10 Gigabit Ethernet cables – Cat6a or above— are recommended in conjunction with a 10 Gigabit uplink switch for the connection between the uplink switch and the host PC in order to accommodate for the high data traffic. A 10GB uplink and NIC are recommended for multi-switch setups or when using Prime Color cameras.
Electromagnetic Shielding
Also, please use a cable that has electromagnetic interference shielding on it. If cables without the shielding are used, cables that are close to each other could interfere and cause the cameras to drop frames in Motive.
External Sync: If you wish to connect external devices, use the eSync synchronization hub. Connect the eSync into one of the PoE switches using an Ethernet cable, or if you have a multi-switch setup, plug the eSync into the aggregation switch.
Uplink Switch: For systems with higher camera counts that uses multiple PoE switches, use an uplink Ethernet switch to link and connect all of the switches to the Host PC. In the end, the switches must be connected in a star topology with the uplink switch at the central node connecting to the host PC. NEVER daisy chain multiple PoE switches in series because doing so can introduce latency to the system.
High Camera Counts: For setting up more than 24 Prime series cameras, we recommend using a 10 Gigabit uplink switch and connecting it to the host PC via an Ethernet cable that supports 10 Gigabit transfer rate — Cat6a or above. This will provide larger data bandwidth and reduce the data transfer latency.
OptiTrack’s Ethernet cameras require PoE or PoE+ Gigabit Ethernet switches, depending on the camera's power requirement. The switch serves two functions: transfer camera data to a host PC, and supply power to each camera over the Ethernet cable (PoE).
The switch must provide consistent power to every port simultaneously in order to power each camera. Standard PoE switches must provide a full 15.4 watts to every port simultaneously. PrimeX 41, PrimeX 22, and Prime Color cameras have stronger IR strobes which require higher power for the maximum performance.
In this case, these cameras need to be routed through PoE+ switches that provide a full 30 watts of power to each port simultaneously. Note that PoE Midspan devices or power injectors are not suitable for Ethernet camera systems.
The following is generally used for large PoE+ camera setups with multiple camera switches. Please refer to the Switch Power Budget and Camera Power Requirements tab above for more information.
Some switches are only allotted a power budget smaller than what is needed depending on which OptiTrack cameras are being used. For larger camera setups this can cause multiple switches that can only use a portion of their available ports. In this case, we recommend an Redundant Power System (RPS) to extend the power budget of your switch. For example, a 24-port switch may have a 370W power budget which only supports 12 PoE+ cameras that require 30W to power. If, however, you have the same 24-port switch with a RPS, you can now power all 24 PoE+ cameras with a 30W power requirement utilizing all 24 of the PoE ports on the switch.
The eSync is used to enable synchronization and timecode in Ethernet-based mocap systems. Only one device is needed per system, and it enables you to link the system to almost any signal source. It has multiple synchronization ports which allow integrating external signals from other devices. When an eSync is used, it is considered as the master in the synchronization chain.
With large camera system setups, you should connect the eSync onto the aggregator switch via a standard Ethernet port for more stable camera synchronization. If PoE is not supported on the aggregator switch, the sync hub will need to be powered separately from a power outlet.
Then, open up the Status Log panel and check there are no 2D frame drops. You may see a few frame drops when booting up the system or when switching between Live and Edit modes; however, this should only occur just momentarily. If the system continues to drop 2D frames, it indicates there is a problem with how the system is delivering the camera data. Please refer to the troubleshooting section for more details.
The settings below are generally for larger camera setups and Prime Color camera setups. Typically, smaller systems will not need to use the settings below. When in doubt, please reach out to our team.
In most cases your switch settings will not be required to be altered. However, if your switch has built in , you'll want to disable this feature.
A power budget that is able to support the desired amount of cameras. If the desired amount of cameras exceeds the power budget of a single switch, additional switches may be used. Please see the section below for more information.
For specific brands/models of switches, please .
For the most part, the switches provided by OptiTrack are ready to go without any need for additional settings or configurations. If you're having issues with setting up your switches provided by OptiTrack please see the Cabling and Load Balancing section below or contact our .
A: 2D frame drops are logged under the and it can also be seen in the . It will be indicated with a warning sign () next to the corresponding camera. You may see a few frame drops when booting up the system or when switching between Live and Edit modes; however, this should occur only momentarily. If the system continues to drop 2D frames, it means there is a problem with receiving the camera data. In many cases, this occurs due to networking problems.
To narrow down the issue, you would want to disable the and check if the frames are still dropping. If it stops, the problem is associated with either software configurations or CPU processing. If it continues to drop, then the problem could be narrowed down to the network configuration, which may be resolved by doing the following:
In the event that SFP ports are NOT used, please use one of the standard Ethernet ports on your switch to uplink data to Motive. If you're unsure if you'll require to use the SFP port and SFP module, please reach out to either our or teams.
PoE switch requirement: The PoE switches must be able to provide 15.4W power to every port simultaneously. PrimeX 41, PrimeX 22, and Prime Color camera models run on a high power mode to achieve longer tracking ranges, and they require 30W of power from each port. If you wish to operate these cameras at standard PoE mode, set the setting to false under the application settings. For network switches provided by OptiTrack, refer to the label for the number of cameras supported for each switch.
At this point, all of the connected cameras will be listed on the and the when you start up Motive. Check to make sure all of the connected cameras are properly listed in Motive.